Admission

LSU SRP recruits and educates graduate and postdoctoral students.

Students can enter the program through:

- ◆ LSU Chemistry Department www.chemistry.lsu.edu
- ♦ LSU Health Sciences Center in New Orleans

www.lsuhsc.edu

♦ LSU Health Sciences Center in Shreveport

www.lsuhscshreveport.edu

For farther information contact:

Robin L. McCarley

Training Core Leader tunnel@lsu.edu

Tel: (225) 578-3239

Financial support for trainees is provided by the Superfund Research Program and the University.

Career Opportunities

Participants who complete our program are prepared for **careers** in:

- * Academia
- * Environmental agencies
- * Industry
- * Government

SUPERFUND RESEARCH PROGRAM LOUISIANA STATE UNIVERSITY

For more information about the

Superfund Research Program visit our

website www.srp.lsu.edu

or contact us:

Barry Dellinger

Program Director barryd@lsu.edu Tel: (225) 578-6759

LSU-SRP Social Network Sites

Facebook www.facebook.com/LSUSRP

lsusrp.wordpress.com

twitter.com/LSUSRP

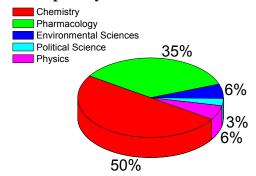
Superfund Research Program Louisiana State University www.srp.lsu.edu 338 Choppin Hall Baton Rouge, LA 70803

SUPERFUND RESEARCH PROGRAM

Louisiana State University

Graduate and Postdoctoral Student Opportunities

LSU Superfund Research Program is an interdisciplinary environmental program and brings together researchers from:


Research focuses on:

Redox-active transition metals and organic pollutants associated with **Particulate Matter** that react to form:

Environmentally Persistent Free Radicals (EPFRs)

Particulate Matterassociated EPFRs mediate formation of other pollutants EPFRs initiate
oxidative stress
resulting in cardiac
and pulmonary
dysfunction

Interdisciplinary Research Team

What are Environmentally Persistent Free Radicals?

 Free radicals formed by reactions between transition metals and organic material (via chemisorption and electron transfer) in combustion and thermal processes.

 EPFRs have a much longer life span than most free radicals and therefore more persistent in the ambient environment.

Research Projects

- Formation and Reactions of Environmentally Persistent Free Radicals in Thermal Processing of Superfund Wastes
- Environmentally Persistent Free Radicals Alter Pulmonary Immunologic Homeostasis
- Environmentally Persistent Free Radicals in Contaminated Soils
- Environmentally Persistent Free Radicals Increase Cardiac Vulnerability to Ischemia
- Pollutant-Particle Systems and Xenobiotic Bioactivation
- Structure and Properties of Metal Oxide Particle-Adsorbate Systems

Interdisciplinary Education through implementation of a multi-point approach:

Increases postdoctoral and graduate student team-playing and breadth of research knowledge/skills by use of Superfund Teams, student-led monthly seminars, workshops, and mini-grants

♦ Enhances postdoctoral and graduate student instruction, scientific literacy and laypeople communication skills through preK-12 outreach activities

 Provides baseline training in chemistry/ physics, combustion, toxicology, and environmental policy and extensive training in student areas of interest

